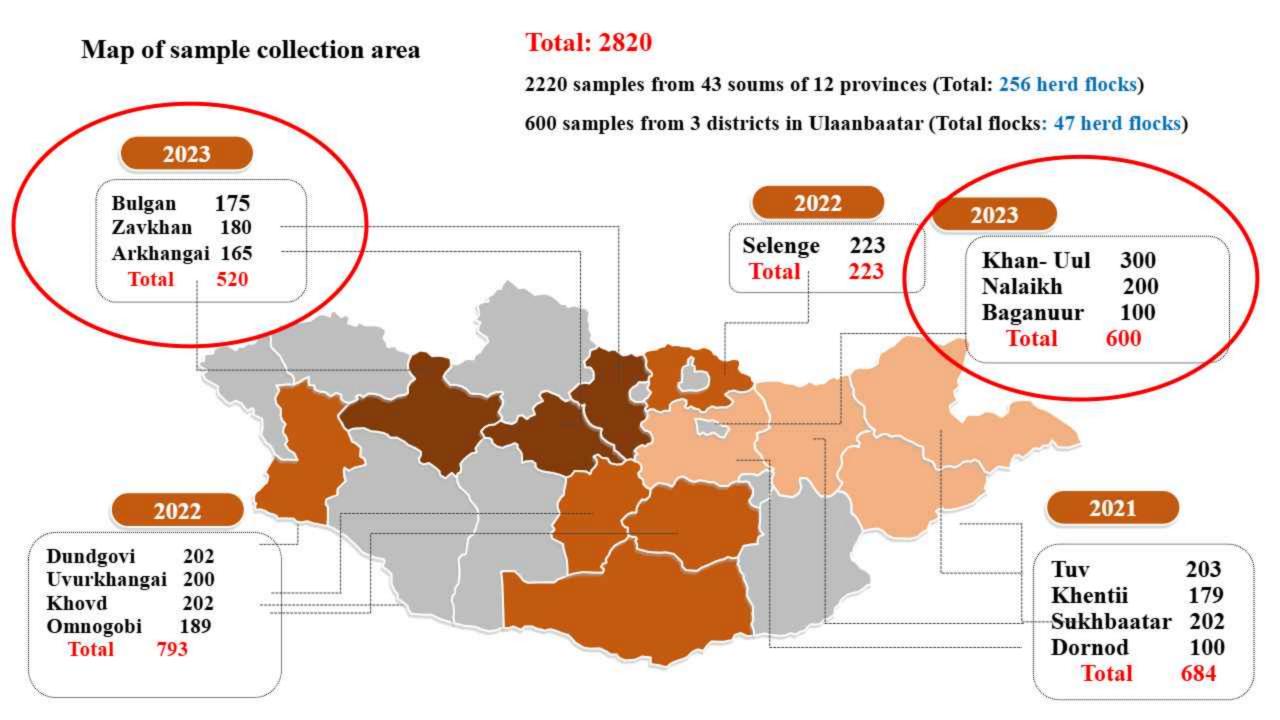


Under project of the

"CONTROL OF TUBERCULOSIS AND GLANDERS"


/SATREPS project/

GLANDERS: Progress activity and Future activity implementation in IVM

Duration: Nov, 2022 to Feb, 2024

21 February, 2024

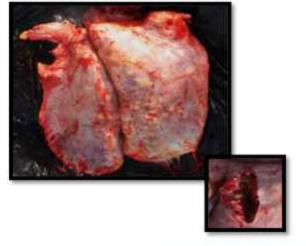
Inputs	Duration
3-3. Molecular-epidemiological and sero-epidemiological evaluation of the epidemics of <i>B. mallei</i> infection in horses	
3.3.1 To perform a sero-epidemiological survey on <i>B. mallei</i> infection (hislory) by testing the sera obtained from horse herds in the project area with the conventional methods (complement-fixation test) in IVM.	10/2020 - 05/2025
3.3.4 To assess the transmission and distribution of <i>B. mallei</i> in horse by performing the comprehensive gene screening using a next-generation sequencer on the isolated strains, which are obtained by culturing specimens of lesioned part of the infected horses	03/2022 - 05/2025

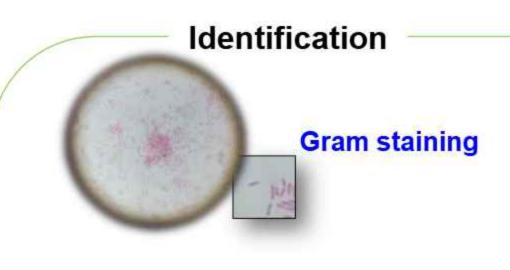
RESULT OF SERO SURVEILLANCE

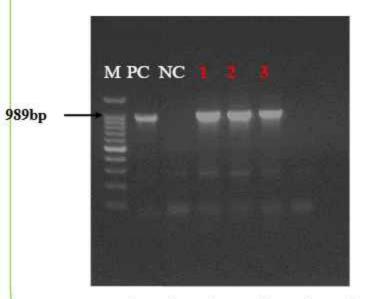
Date	Province	Number of samples	Positive by CFT(%)
	Tuv	203	1 (0.5)
	Khentii	179	1 (0.6)
2021	Sukhbaatar	202	9 (4.5)
	Dornod	100	2 (2.0)
	Dundgovi	202	3 (1.5)
	Uvurkhangai	200	6 (3.0)
2022	Selenge	223	3 (1.3)
	Khovd	202	0 (0.0)
	Omnogovi	189	0 (0.0)
	Bulgan	175	0 (0.0)
	Zavkhan	180	1 (0.6)
2023	Arkhangai	165	2 (1.2)
2023	Baganuur	100	1 (1.0)
	Nalaikh	200	1 (0.5)
	Khan-Uul	300	1 (0.3)
	Total	2820	31 (1.1)

Inputs	Duration
3-3. Molecular-epidemiological and sero-epidemiological evaluation of the epidemics of <i>B. mallei</i> infection in horses	
3.3.1 To perform a sero-epidemiological survey on <i>B. mallei</i> infection (hisTory) by testing the sera obtained from horse herds in the project area with the conventional methods (complement-fixation and plate agglutination) in IVM.	10/2020 - 05/2025
3.3.4 To assess the transmission and distribution of <i>B. mallei</i> in horse by performing the comprehensive gene screening using a next-generation sequencer on the isolated strains, which are obtained by culturing specimens of lesioned part of the infected horses	03/2022 - 05/2025

Clinical Symptoms of Glanderous horses/results of ST






		skin thickness (mm)				diameter m)	
№ Name	Before.	24 hrs	48 hrs	24 hrs	48 hrs	Result	
1	23001	3	25	18	35	33	Positive
2	23002	3	23	50	30	90	Positive
3	23003	3	27	17	30	32	Positive

Result of isolation and identification for B.mallei

Result of standard PCR with species specific primers of *B. mallei* in **2023**M - 100bp DNA ladder,

PC - positive control,

NC - negative control

1 - 3 new isolates

PCR detection of B. mallei using primer pairs

Bma-ISO407-flipF (5"TCA-GGT-TTG-TAT-GTC-GCT-CGG-3")

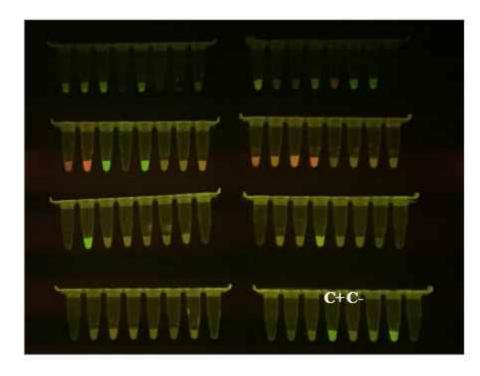
Bma-ISO407-flipR (5"CTA-GGT-GAA-GCT-CTG-CGC-GAG-3")

Outputs 3.3.4

Table 4. Collected samples from slaughterhouses and stakeholder in 2020 to 2024

		Samples		Confirmed by PCR				
№	Livestock species	(lung. spleen, testis, kidney, liver and skin)	Bacteriology	Burkholderia spp	B. n	nallei	Date of Isolated	
4	Horse ¹	33	33	2		=	2021-2023	
1	Camel ¹	7	7	2		<u>~</u> :	2022	
						n=1	2018	
	77 2	240	7.5	20.4		n=2	2019	
2	Horse ²	42	76	21	8	n=4	2022	
						n=1	2023	
	TOTAL	82	116	25		8		

Bacteriology was performed under the "OIE Terrestrial Manual" used as a guideline.

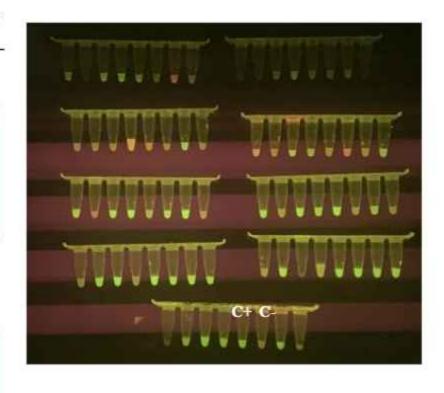

¹Samples collected from slaughtered horses in SLAUGHTERHOUSES

²Samples collected from Glanderous horse that were <u>EUTHANIZED</u>

Comparative of diagnostic tests result for the detection of Glanders, including dry LAMP-PCR

№	Province	LAMP-PCR result positive/total tested	bacteriology	skin test	CFT	iELISA
1	Tuv	1/8 (12.5)		+	+	+
2	Khentii	1/13 (7.6)	bacteriology	NT	+	-
3	Arkhangai	0/4 (0)	is ongoing, result is not	NT	9 	-
4	Bulgan	1/21 (4.7)	finalized	NT	3 -	NT
5	Ulaanbaatai	1/1 (100.0)		NT	% =	NT
	Total	4/47 (8.5)		1		

Totally: 47
47 swabs (nasal, eye, skin) from suspected horses & others


Comparative of diagnostic tests result for the detection of Glanders, including new candidate test

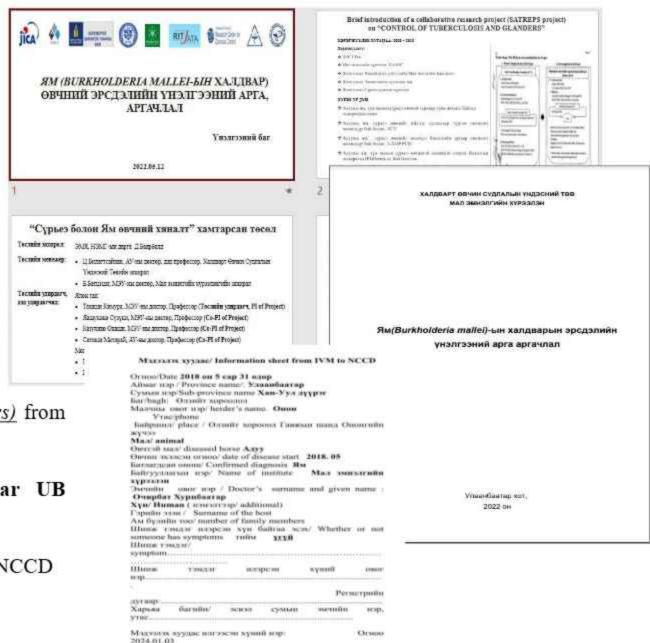
Totally: 11
11 tissue samples (<u>lung</u>, <u>liver</u>, <u>spleen</u>, <u>skin node</u>, <u>testis</u>) from Glanderous/suspected horses

				Status		
Horse ID	Province	LAMP-I	PCR	Daniel II.	CET	C1-! 44
1		Nasal swab	Tissue	-Bacteriology	CFT	Skin test
Do1-23	Dornod	Ξ	+	Œ	ä	-
Do2_23	Dornod	+	+	3 <u>-</u>	+	+
Tuv3_22	Tuv	+	+	+	+	+
Tuv4_m_22	Tuv (1)	+	+	+	+	+
Tuv5_22	Tuv			-	+	+
Tuv6_f_22	Tuv (1)	-	+	-	-	3 4
Tuv7_22	Tuv	- ×	+		-	+
UB23001	UB	+	+	+	+	+
UB23002	UB	+	+	<u> </u>	+	+
UB23003	UB	+	+	2 - 1	+	+
Um2209	Umnugobi	NT*	+	2=	NT*	NT

100 %

27%

^{* -} no serum/no swab


(1) - mare and her foal

Inputs

4.3. Risk assessment of B. mallei i nfection as a zoonotic disease

4.3.1. To determine a study design (e.g., the preparation of survey procedures, the unification of analytical methods and so on) in order to perform the risk assessment associated with B. mallei transmission between livestock and human, through the discussions between medical and veterinary glanders research groups.

- The collected questionnaires (for the RA study of Glanders) from
 150 herders of 47 soums in 12 provinces
- The collected questionnaires 14 slaughterhouses near UB (located in Emeelt and Nalaikh)
- 3. Case control Prepared to information sheet from IVM to NCCD

Bovine Tuberculosis (bTB)

Tables show the Operation plan of the project (Revised)

Outputs 3.1.1

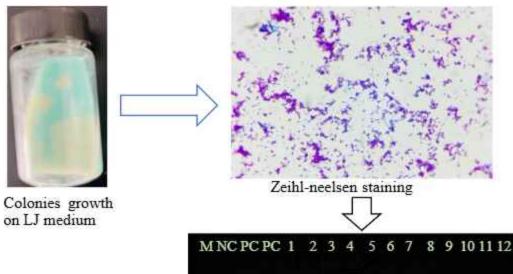
Collected samples from Slaughterhouses in UB /Emeelt and Nalaikh/

Lung samples	Cattle/yak	Sheep	Camel	Total
2022	87	77	21	185

Bacteriology was performed under the

"OIE Terrestrial Manual of Standard for Diagnostic Tests and Vaccines" used as a guideline.

3-1. Molecular-epidemiological evaluation of the epidemics of M. bovis Infection in livestock

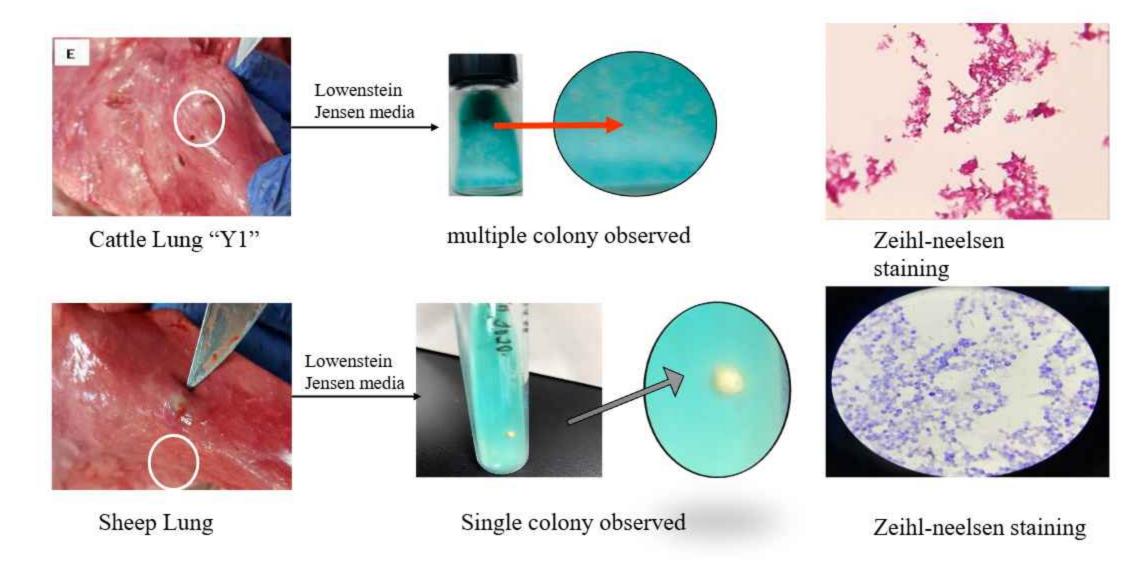

- 3.1.1. To isolate tuberculosis complex using the L-J mediua in IVM, from the tubercles-suspected granulomas samples collected from cattle and sheep at slaughterhouses and meat markets in the project target areas.
- 3.1.2. To estimate the prevalence of M. bovis in the tuberculosis complex isolated from cattle and sheep by determining the presence of M. bovis in the colonies grown on L-J medium using the genetic detection method developed in the Activity 1.1.
- 3.1.3. To investigate the endemic status of M. bovis infection including subclinical infection by performing the Interferon-Gamma Release Assay (IGRA) on herds in which M. bovis-detected cattle were kept.

Bacteriology

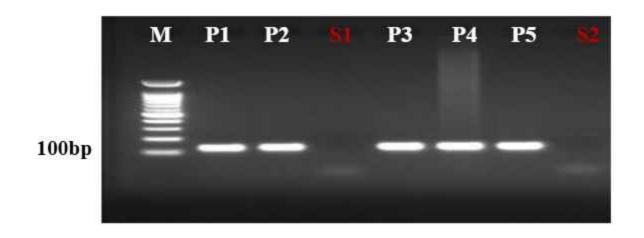
Milk samples from some province in 2022 including from UB in 2023

Date	Place	Milk/samples
2022	Selenge	22
	Tuv Bayanchandmani	23
2023	TOCA market	3
2020	Tuv Batsumber	14
	UB songino khairkhan district	82
Total		144

Total 144 milk samples were processed then cultured in Lowenstein media incubating at 37°C in for up to 4-10 weeks. Mycobacterium like colony growth was observed in the 12 samples.


We performed PCR to detect M. tuberculosis on 12 suspected colonies.

However, our PCR did not yield any positive results. Subsequently, we forwarded these all colonies to the NCCD for confirmation but no positive results were obtained.


M-marker 100bp, NC negative control, PC-BCG positive control, from NCCD positive control, 1-12 samples

Bacteriology results

The lung samples were processed then cultured in Lowenstein media incubating at 37°C in for up to 8-10 weeks. Mycobacterium like colony growth was observed in the sample "Y1" and "Sh17".

Result (Molecular biology)

M - 100 bp molecular weight marker

P1 - positive control M.tuberculosis

P2 - positive control M. bovis

S1- lung sample Y1

P3 - positive control BCG

P4 - positive control from NCCD

P5 - positive control from NCCD

S2- lung sample SH17

Protocol:

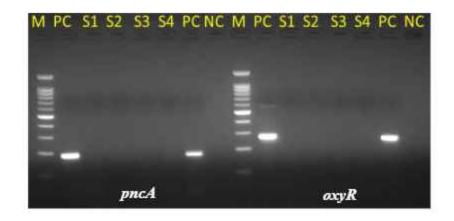
- ✓ DNA was isolated from a suspected colony by a purification kit and measured its concentration at 260/280 nm
- ✓ PCR mixer mix was prepared using MTBC specific primer (IS6110) PCR conditions were as below

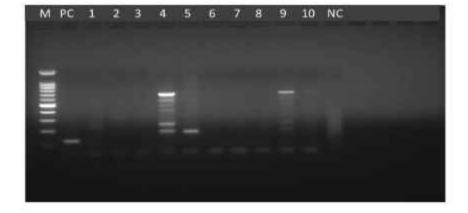
94°C for 2 min

94°C for 30 sec

63°C for 30 sec

68°C for 1 min


4°C with total of 35 cycles


✓ PCR products were run at 100V for 25 mins in 1.5% agarose gel

Molecular biology results 2023

We conducted direct PCR /M. tuberculosis and M. bovis/ to 20 milk samples, but there is no positive reaction.

IS6110 sequence

Distinguishing M.bovis from M.tuberculosis

Based on pncA, oxyR sequence

M - 100 bp molecular weight marker

PC- Positive control from NCCD

S1- S4- Milk samples

PC- Positive control BCG

NC- Negative control

Mycobacetrium spp like bacteria's DNA sequence, analysis

performed at the RCZC, Japan

0	original ID	Closest species	Identity	rpoB primer pair can detect Mycobacteria and Streptom	y Overlapped peak means mixed	culture
D	DDW	Arthrobacter crystallopoietes		Contamination of lab reagents?	overlapped peak. 1	
2	(2)	Arthrobacter crystallopoletes		Contamination of lab reagents?	overlapped peak, several	
4	I-1 ?, y-1 ?	Mycolicibacter hiberniae	227/22	8 May be Mycolicibacter hiberniae, environmental bacteria	almost no overlapped peaks	GGTGG
4	-1?	Mycobacterium nonchromogenicum	224/23	Novel species, environmental bacteria	very good	CCGGT
V-	-1-17, 4-1-17	Mycolicibacter hiberniae	229/23	May be Mycolicibacter hiberniae, environmental bacteria	overlapped peak: more than sev	er CCGGT
٧	-1 (1-1)	Mycobacterium nonchromogenicum	224/23	Novel species, environmental bacteria	very good	CCGGT
5	5	Mycobacterium nonchromogenicum	225/23	1 Novel species, environmental bacteria	very good	CCCGG:
A	Arg7	Arthrobacter crystallopoietes		Contamination of lab reagents?	overlapped peak, several	
A	Arg * ?	Mycobacterium nonchromogenicum	225/23	1 Novel species, environmental bacteria	very good	CCCGG
A	Arg2 7	Mycobacterium nonchromogenicum	225/23	11 Novel species, environmental bacteria	very good	CCCGG
Α	\rg ** ?	Arthrobacter crystallopoletes		Contamination of lab reagents?	overlapped peak: a little more th	an several
Α	Arg3	Arthrobacter crystallopoletes		Contamination of lab reagents?	overlapped peak, more than sev	eral
A	\rg *** 7	Corynebacterium provencense	228/23	11 Not Mycobacterium species	several small overlapped peaks	CCGGT
S	SebR1717 191	Mycolicibacterium confluentis or Mycobacterium porcinum	211/21	6 Novel species, environmental bacteria	overlapped peak, several	
S	SEBR 171	Mycobacterium nonchromogenicum, M. virginiensis or M. hiberniae	222/22	8	almost no overlapped peaks	GGTGG
В	3n3?	Arthrobacter crystallopoietes		Contamination of lab reagents?	overlapped peak: a little more th	an several
В	3N 3	Mycobacterium nonchromogenicum	197/20	2 Novel species, environmental bacteria	almost no overlapped peaks	TCGGC
В	3N.7	Mycobacterium sp.	227/23	2 Mycolicibacterium poriferae 226/232, Mycobacterium chubuen	s overlapped peak: several	
		Mycobacterium nonchromogenicum	224/23	Novel species, environmental bacteria	very good	CCGGT
	73070	Arthrobacter crystallopoletes		Not Mycobacterium species	heavy overlap, or NG seq	
		Streptomyces tsukubensis	184/19	5 Not Mycobacterium species	overlapped peak, a little more th	an several
3	73403	Mycobacterium nonchromogenicum or Mycolicibacter virginiensis or M	hi 204/21	0	almost no overlapped peaks	
		Arthrobacter crystallopoietes	205/21	8 Not Mycobacterium species	overlapped peak: more than sev	eral
3	73062	Mycobacterium bolletii or Mycolicibacterium phocaicum	220/22	6 Novel species, environmental bacteria	almost no overlapped peaks	TGGCG
3	73062 ?	Comamonas thiooxydans	207/21	3 Not Mycobacterium species	heavy overlap	
		ize band by IS6110PCR				
314	K raint band b	y IS6110PCR (Size was different from above)				
38	K rank band b	y 130 F tor CR (Size was unletent from above)				

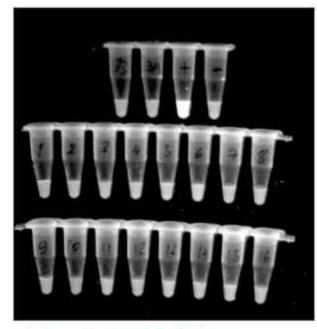
Mycobacterium nonchromogenicum

Mycobacterium other species B-boiled

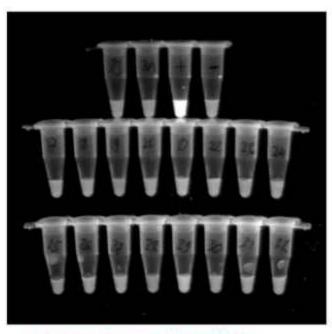
K-kit

Nested PCR -Negative

Only two isolates, which yielded positive results in molecular biology tests, exhibited a 99.5% similarity to the Mycolicibacter hyberniae species.


Additionally, According to the DNA sequencing results six isolates belonged to the new Mycobacteria genus.

Result of the dry LAMP-PCR for diagnosis of bTB


In 2023, DNAs was extracted from 34 lung samples collected near UB City at a slaughterhouse using the Proteinase K protocol. Subsequently, the extracted DNA was analyzed through a dry LAMP reaction."

- + Positive control BCG DNA
- Negative control Water

- + Positive control BCG DNA
- Negative control Water
 1-16 Lung DNA samples
 33-34 Lung DNA samples

- + Positive control BCG DNA
- Negative control Water
 17-34 Lung DNA samples

Result: all tested samples were negative.

Tables show the Operation plan of the project

Outputs 3.1.3

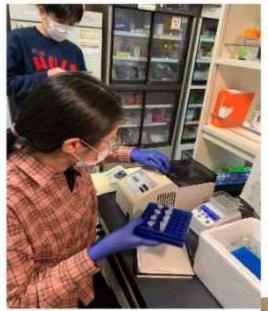
A complete solution for the diagnosis of Bovine tuberculosis: IDvet PPD antigens & the ID Screen® Ruminant IFN-g ELISA

3-1. Molecular-epidemiological evaluation of the epidemics of M. bovis Infection in livestock

- 3.1.1. To isolate tuberculosis complex using the L-J mediua in IVM, from the tubercles-suspected granulomas samples collected from cattle and sheep at slaughterhouses and meat markets in the project target areas.
- 3.1.2. To estimate the prevalence of M. bovis in the tuberculosis complex isolated from cattle and sheep by determining the presence of M. bovis in the colonies grown on L-J medium using the genetic detection method developed in the Activity 1.1.
- 3.1.3. To investigate the endemic status of M. bovis infection including subclinical infection by performing the Interferon-Gamma Release Assay (IGRA) on herds in which M. bovis-detected cattle were kept.

SEROLOGY RESULTS in UB, 2023 by IDVet ELISA

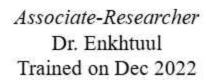
		Stimulated plasma	Plasma sample induced with PPD_B		Plasma sample induced with PPD_A		Skin test /skin thickness increased >4mm considered positive/			
N	District	samples IGRA assay		assay IGRA assay			e left side vis PPD/		ht side /M. PPD/	
			Tested	Positive	Tested	Positive	Tested	Positive	Tested	Positive
1	Songino khairkhan	290	248	16	248	24	290	30	160	26
2	Khan-Uul	170	140	3	140	2	170	0	124	0
3	Bayanzurkh	40	0	0	0	0	40	0	10	0
	Total	500	388	19	388	26	500	30	294	26


Bovine Tuberculosis (bTB)

Johne's disease surveillance /serum samples/

Nº	District	Johne's Disease screening ELISA			
	:	Tested	Positive		
1	Songinokhairk han	255	2		
2	Khan-Uul	37	1		
3	Bayanzurkh	0	0		
	Total	292 (3 (1.02%)		

ID number	Johne's Disease screening ELISA Positive samples		Plasma sample induced with PPD_B		Plasma sample induced with PPD_A	
			IGRA assay			
	Aver_ S/P	IFN_ status	Aver S/P	IFN_ status	Aver S/P	IFN_ status
SHB-7	0.384	P	9,2	P	32.27	P
SHB-236	0.69	P	369.5	P	218.4	P
KUB-12.1	0.672	P	6.2	N	39.2	P


Trained at Hokkaido University (Dec 2022 to Feb, 2024)

Associate-Researcher
Dr. Lkham
Trained on Dec 2023

Associate-Researcher
Dr. Khurtsbaatar
Trained on Jan 2023

Associate-Researcher
Dr. Enkhtsetseg
Trained on Dec 2022

Trained at Hokkaido University on Dec, 2023

Associate-Researcher
O. Khurtsbaatar

Associate-Researcher Ts. Batbold

Associate-Researcher G. Ulziisaikhan

Assistant-Researcher T. Agiimaa

Goal in 2024

- To perform bTB surveillance of flocks and slaughterhouses near UB.
- To perform bio-sample collection from Glanderous horses.
- To perform Johne's disease surveillance flocks near UB
- To isolate of the B. mallei field strains,
- To cooperate with HU (to perform evaluation/validation of the new rapid candidate test /dry LAMP-PCR, ICT, iELISA, etc/)
- To write scientific papers
- To send trainees to Japan